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Space- and intensity-constrained reconstruction
for compressed ultrafast photography
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The single-shot compressed ultrafast photography (CUP)
camera is the fastest receive-only camera in the world. In this
Letter, we introduce an external CCD camera and a space- and
intensity-constrained (SIC) reconstruction algorithm to im-
prove the image quality of CUP. The external CCD camera
takes a time-unsheared image of the dynamic scene. Unlike
the previously used unconstrained algorithm, the proposed
algorithm incorporates both spatial and intensity constraints
based on the additional prior information provided by the
external CCD camera. First, a spatial mask is extracted from
the time-unsheared image to define the zone of action. Next,
an intensity threshold is determined based on the similarity
between the temporally projected image of the reconstructed
datacube and the time-unsheared image. Both simulation and
experimental studies show that the SIC reconstruction im-
proves the spatial resolution, contrast, and general quality
of the reconstructed image. © 2016 Optical Society of America

OCIS codes: (100.0118) Imaging ultrafast phenomena; (110.1758)
Computational imaging; (110.3010) Image reconstruction techniques.
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High-speed imaging technologies have been developed continu-
ously for more than a century, going back to Talbot’s recording
of a spinning disk in the 1850s. The acquisition frame rates have
been increased from ~50 frames per second with an intermittent
camera [1] to one billion frames per second with a small number
of frames, using a state-of-the-art electronic design with CCD
and CMOS sensors [2]. However, with these electronic sensors,
further increase in frame rate is impeded by the on-chip storage and
electronic readout speed. The advent of the streak camera breaks
this speed limit at the expense of the imaging dimensions—the
use of a narrow entrance slit restrains its imaging to one spatial
dimension.

To enable two-dimensional (2D) ultrafast imaging, different
technologies have been developed. Pump—probe measurement
is currently the predominant approach for capturing transient
events [3—5]. Despite its widespread applications, this method re-
quires that the transient events be precisely repeatable.
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Single-shot ultrafast 2D imaging techniques have been devel-
oped [6-8]. For example, using burst illumination produced by a
spatiotemporally modulated ultrashort laser pulse, the sequen-
tially timed all-optical mapping photography camera has enabled
trillion-frames-per-second photography with a sequence depth of
up to six frames. However, its reliance on the specialized active
illumination rules out imaging of chemiluminescent and photo-
luminescent objects. This challenge can be overcome by utilizing
the streak camera as a 2D imager. Recent approaches include us-
ing a tilted lenslet array [9] or a 2D pinhole array [10] to achieve
parallel streak framing. However, these methods suffer from
significant throughput loss.

To overcome these limitations, we have developed compressed
ultrafast photography (CUP), a new computational ultrafast imag-
ing technology that can capture transient dynamic events at 100
billion frames per second in a single camera exposure with a se-
quence depth of hundreds of frames [11]. CUP synergistically com-
bines two technologies: the streak camera and compressed sensing
(CS). Unlike other streak-camera-based ultrafast imagers, CUP uses
a fully opened entrance slit onto the streak camera. In addition, the
dynamic scene is spatially encoded with a pseudorandom binary
mask through a digital micromirror device (DMD). Given the spa-
tiotemporal sparsity of the dynamic scene, which holds in many if
not most natural scenes, a CS-based reconstruction algorithm can
successfully decode the spatiotemporal mixing in the vertical axis of
the streak camera and retrieve spatiotemporal information.

Using CUP, we have visualized many transient light-speed
phenomena [11], including the propagation, reflection, and re-
fraction of a short laser pulse in space, faster-than-light propaga-
tion of non-information, and color-resolved fluorescent excitation
and emission. Recently, by leveraging the time-of-flight (ToF) of
light signals backscattered from a three-dimensional object, CUP
has also been used for dynamic volumetric imaging [12].

Currently, CUP relies on the unconstrained two-step iterative
shrinkage/thresholding (TwIST) algorithm [13] to reconstruct
the event datacube. The reconstructed image resolution is de-
graded by approximately a factor of 2 by the temporal shearing
operation in the streak camera and reconstruction. In this Letter,
we report the incorporation of additional prior information from
an external CCD camera, which records a time-unsheared image
of the dynamic scene. With the superior spatial resolution
provided by the external CCD, we formulate a space- and
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intensity-constrained (SIC) reconstruction algorithm to fully uti-
lize this additional view of the scene, with the goals of improving
image resolution, mitigating low-intensity artifacts, and boosting
the general image quality of CUP.

In the conventional CUP system, the observed dynamic scene
is spatially encoded by the DMD, temporally sheared by the
streak tube, and then spatiotemporally integrated by the internal
CCD camera inside the streak camera. As discussed previously
[11], to reconstruct the original scene, one needs to solve the
following inverse problem:

% = argmin{0.5[|ZSC(x) - y[I3 + Allxll1v}, U]

where X is the intensity distribution of the dynamic scene, 7 is the
spatiotemporal integration operator, S is the temporal shearing
operator, C is the encoding operator that comes from the DMD,
y is the streak camera measurement, || - ||, denotes the #* norm,
| - [lTv denotes the total variation (TV) norm, and 4 is the regu-
larization parameter that tunes the ratio between the measurement
fidelity term and the TV-based regularization term.

In our proposed method (outlined in Fig. 1), an external CCD
camera records an unsheared spatiotemporally integrated image of
the dynamic scene. Without the blurring caused by the temporal
shearing in the streak tube, this additional perspective on the dy-
namic scene enjoys a better spatial resolution. To leverage this ad-
vantage, we first extract a spatial mask from the time-unsheared
image, which is later used to define the zone of action in image
reconstruction. A fairly standard grayscale segmentation approach
is employed in this step: First, an adaptive local thresholding algo-
rithm [14] is applied to the image with a 15-pixel circular local
window to get an initial binary mask. Then, a 5-pixel median filter
is applied to remove salt-and-pepper noise on the binary image.
The resultant 2D binary mask is then used as a spatial constraint
in the optimization framework so that pixels outside the mask are
not updated during optimization and remain zero. Such a spatial
constraint improves the spatial resolution of the reconstructed data-
cube and accelerates the reconstruction procedure by reducing the
degrees of freedom of the underlying object function.

Second, to reduce the low-intensity artifacts in the recon-
structed datacube, we introduce an intensity threshold constraint,
based on the time-unsheared image, in the optimization algo-
rithm. Taking advantage of the fact that an iterative shrinkage/
thresholding optimizer can impose convex set constraints at each
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Fig. 1. Operation principle of the space- and intensity-constrained

(SIC) reconstruction for compressed ultrafast photography (CUP).
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iteration without losing its convergence properties [15], we apply
an intensity threshold to the optimization problem in Eq. (1).
Together with a spatial constraint, we have the new SIC solver
modified from Eq. (1):

X, =arg_min {0.5175C0 - yII3 + Zlxllv} (@)

Here, M is the set of possible solutions confined by the
spatial mask and s is the intensity threshold. Mathematically, the
spatial mask forces background values to be zero and the intensity
threshold ensures that all reconstructed pixel values are either
greater than s or zero.

The optimal threshold is chosen based on the similarity
between the external CCD camera image and the temporally
integrated image of the reconstructed datacube. We use the root-
mean-square error (RMSE) as the similarity criterion. If we de-
note Y as the measured external CCD camera image and X, as the
optimized solution with a threshold s, the optimal threshold is
chosen by the following formula:

§ = argmin[1/N - |7 (x)) - o lI3]'%, (©)

where the objective function is the RMSE and MV is the total num-
ber of pixels in y,. Since this optimization problem is based on a
separate parameterized optimization problem (i.e., solving for X,
with a given ), common gradient-based minimization methods
become ineffective. We therefore employ a simple grid search
method to find an approximation. More specifically, we first solve
Eq. (2) with s = 0 and then find the largest pixel value in the
solution. Values between 0 and 0.01 of this maximum pixel value
are considered candidates for the optimal threshold. Eleven evenly
distributed threshold values are then tried, and the RMSE criteria
are calculated for each threshold. The result for the minimal
RMSE is then chosen as the final reconstruction result.

Since multiple intermediate solutions of Eq. (2) are needed in
our method, a fast algorithm becomes more desirable for SIC
reconstruction. The fast iterative shrinkage/thresholding algorithm
[15] has a reportedly faster convergence rate than the previously
employed TwIST algorithm in solving general TV-regularized
£?-norm minimization problems, such as the one stated in Eq. (2),
and hence is used in SIC reconstruction. To further accelerate
our reconstruction method, we also implement the algorithm with
the CUDA parallel programming framework on a single Tesla K40c
graphic processing unit (GPU), reducing typical reconstruction time
from tens of minutes to seconds.

We first validated our reconstruction method on numerically
simulated data. A 200-by-200 Shepp-Logan (S-L) phantom was
used as the base image. The simulated dynamic scene contained
10 frames, with the S-L phantom moving from left to right at four
pixels per frame and flashing at the third, fifth, and eighth frames.
The other frames are left black (set to zeros). The streak camera
measurement was generated according to the forward model, and
1% Gaussian white noise was added. Similarly, the CCD mea-
surement was generated by integrating the original dynamic
scene along the time axis. To demonstrate the advantages of our
method, the dynamic scene was reconstructed using both the
conventional TwIST-based unconstrained reconstruction method
and our proposed SIC reconstruction method.

Figure 2 shows the simulation results. The similarity metric
varies when we tune the intensity threshold value, as shown in
Fig. 2(a). In this particular case, a threshold of 0.008 gives us
the best similarity and the datacube generated by this threshold



Letter

Vol. 3, No. 7 / July 2016 / Optica 696

(@) Z | (e) -—— TwIST
Optimal g‘j 1 SIC
threshold =

3
l NO0.5
©
1S —
. . . N , 58 0
0 2 4 6 8 10 Z 1 10

5
Threshold (10?) Frame index

z
o
3
3
<
N
@
Q
=)
2
)
3
[
o
<

0

Fig. 2. Results of the numerical simulation. (a) Root-mean-square
error (RMSE) as the similarity metric versus tested threshold values.
(b) Fifth frame of the ground truth dynamic scene. (c) As (b), but shows
the TwIST reconstructed result. (d) As (b) and (c), but shows the SIC
reconstructed result. (¢) Change in average normalized intensity across
ten frames of the two reconstructed datacubes.

is chosen to be the final reconstruction result. Figures 2(b)-2(d)
show the same (the fifth) frame of the ground truth, the TwIST
reconstructed result, and the SIC reconstructed result. Focusing
on Region 1, the large bright patch demonstrates better contrast
in the image produced by the SIC reconstruction than that by the
conventional TwIST reconstruction. In Region 2, the SIC method
successfully recovers the small bright spot presented in the ground
truth, while the conventional TwIST method fails to reconstruct
this feature. The boundary between the dark and bright patches in
Region 3 is also more prominent in our result than in the TwIST
result. To compare the reconstruction quality of the two methods
across frames, we plot the average normalized intensity against the
frame index in Fig. 2(e). The SIC reconstruction leaves much
less residual signal in the supposed black frames than the uncon-
strained TwIST method, demonstrating a better reconstruction
performance in the time domain.

To experimentally validate our method, we upgraded the
first-generation CUP system (Fig. 3). The dynamic scene is first
imaged by a camera zoom lens (focal length 18-55 mm) to an
intermediate image plane. Then a beam splitter divides the light
into two directions. The reflected light is directly imaged by an
external CCD camera. The transmitted light is passed to a DMD
by a 4f imaging system with a tube lens and an objective lens.
A pseudorandom binary pattern is programmed onto the DMD
to spatially encode the dynamic scene. Collected by the same ob-
jective lens, the encoded scene is further imaged to the wide-open
entrance slit of a streak camera. Inside the streak camera, the
incident light is first imaged to a photocathode where light is
converted into photoelectrons. After initial acceleration, these
photoelectrons are sheared by a sweep voltage in the vertical axis,
according to the ToF (inset in Fig. 3). Then the temporally
sheared photoelectrons bombard a microchannel plate, where
the current is amplified by generating secondary electrons. A
phosphor screen converts the electrons back into light. An
internal CCD camera then images the phosphor screen and
compressively records the spatially encoded, temporally sheared
dynamic scene in a single 2D image.

With this upgraded CUP system, we imaged a dynamic

scene, namely a laser beam sweeping across a car-model target.
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Fig. 3. System schematic. Inset: detailed illustration of the principle of
the streak camera. DMD, digital micromirror device; MCP, microchan-
nel plate; PS, phosphor screen; V, sweep voltage. Equipment details:
camera lens, Nikon, f = 18-55 mm; DMD, Texas Instruments,
LightCrafter 3000; external CCD camera, Point Gray, GS3-U3-
2854M-C; internal CCD, Hamamatsu, ORCA-R2; objective lens,
Olympus, UPLSAPO 4 x ; streak camera, Hamamatsu, C7700; tube
lens, Thorlabs, AC254-150-A.

A solid-state pulsed laser (532 nm wavelength, 7 ps pulse duration)
was the light source. The laser beam was first passed through an
engineered diffuser and illuminated the target at an oblique angle
of ~30° with respect to the surface normal. The CUP system was
placed perpendicular to the target’s surface to collect the scattered
photons. The system speed was 100 billion frames per second,
achieved by setting the streak cameras shearing velocity to
1.32 mm/ns.

Similar to the simulation study, we reconstructed the dynamic
scene using both the unconstrained TwIST and the new SIC
reconstruction method. Figures 4(a) and 4(b) show temporally
projected images of the reconstructed datacubes. A frame-
by-frame comparison of the reconstructed datacubes from both
methods is provided in Visualization 1. In the spatial domain,
the results of the SIC method illustrate sharper boundaries.
Figure 4(c) shows signal changes across time at the same group
of pixels circled in Figs. 4(a) and 4(b). The full width at half-
maximum (FWHM) of the temporal response is reduced from
~60 ps in the TwIST result to ~50 ps in the SIC result.
Because the laser pulse width (7 ps) is sufficiently small, we can
conclude that the SIC method improves temporal resolution by
~17%. While the sharper boundaries are likely the outcome of
the spatial constraint, the improved temporal resolution is largely
due to the optimized intensity constraint. Figures 4(d) and 4(e)
show the x - y - ¢ volumetric renderings of the datacubes recon-
structed by the TwIST and SIC methods, respectively.

To further demonstrate the strength of our method, we
imaged a picosecond laser pulse traveling in scattering air. The
light source was the same laser used in the car model experiment.
Figures 5(a) and 5(b) compare single frames extracted from the
TwIST- and SIC-reconstructed datacubes. Visualization 2 is a
frame-by-frame comparison of the reconstructed results from
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Fig. 4. Car model experimental results. (a) Temporally projected
image of the TwIST-reconstructed datacube. (b) As (a), but showing
the datacube from the SIC reconstruction. A frame-by-frame comparison
of the two reconstructed datacubes is shown in Visualization 1. (c) Signal
evolution at the circled pixels in (a) and (b). (d) An x - y - # volumetric
rendering of the TwIST-reconstructed datacube. (e) As (d), but showing
the SIC-reconstructed datacube.

both methods. Improvement of image quality within the masked
area (marked by the white curves) can be clearly observed in the
SIC result. As shown in Fig. 5(c), the signal profile along the
propagation direction is especially narrowed in the SIC result
compared to that in the TwIST result, from a FWHM of 25.0
to 10.4 mm. This improvement resulted from a combination
of improvements in the spatial and temporal resolutions.

Our previous ToF-CUP technique [12] uses a similar system
setup, with one streak camera channel and one external CCD chan-
nel. However, ToF—CUP reconstruction only overlays the grayscale
time-unsheared image on the TwIST-reconstructed datacube as a
postprocessing method. The SIC method, on the contrary, extracts
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Fig. 5. Propagating picosecond laser pulse results. (a) TwIST-
reconstructed frame at r = 170 ps. (b) SIC-reconstructed frame at
t = 170 ps. White edges in both panels indicate the zone of action
identified by the external CCD camera, which was not used in the
TwIST reconstruction method. A frame-by-frame comparison of the two
reconstructed datacubes is shown in Visualization 2. (c) Image profiles

along the indicated lines labeled in (a) and (b).

a 2D mask and incorporates it as a spatial constraint in the opti-
mizer. Moreover, by adding and optimizing an intensity constraint,
SIC finds an adaptive spatiotemporal mask based on the recovered
datacube. The combined effect of spatial and intensity constraints
not only eliminated artifacts in the expected black regions, but also
improved image quality inside the zone of action, as demonstrated
in both simulated and experimental results. Naturally, by applying
the SIC reconstruction method to the ToF—CUP system, one
can expect even more accurate ToF information across the object
surface, with better spatial resolution.

In conclusion, our SIC reconstruction method incorporates
an external CCD camera that captures another perspective of
the dynamic scene. Our new method exploits the resultant
additional prior information by extracting spatial and intensity
constraints from the external CCD image. As demonstrated
with both numerical simulation and experimental data, the SIC
reconstruction method recovers the dynamic scene with shaper
boundaries, higher feature contrast, fewer low-intensity artifacts,
and, in general, better image quality than the unconstrained
TwIST reconstruction method in previous CUP technologies.
Although it requires solving the original optimization problem
multiple times, our SIC reconstruction leverages a faster
reconstruction algorithm as well as current advances in computa-
tional hardware and GPU parallel computing technologies to
reduce reconstruction time.
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